:圆法的全称为“哈代·李特伍德圆法”,不但是研究哥德巴赫猜想的重要工具,更是解析数论中常备用到的重要工具。
而关于这个工具的发明,并非是在哥德巴赫问题上。现在数学界普遍认为的观点是,这一概念是哈代在与拉马努金研究“整数拆分的渐近分析”问题中最先出现的,而后在哈代与李特伍德合作研究华林问题时,被补充完整。
如今,作为研究哥德巴赫猜想的重要工具,这项工具已经被后世的数学家发扬光大。
比如站在讲台上的赫尔夫戈特,便是当今数论界中,圆法理论的大牛。
“……哥德巴赫猜想的内涵为任意大于2的偶数都可写成两个质数之和,我们姑且称之为猜想a。”
“……由于奇数减去奇素数是一个偶数,猜想a认为任何偶数都等于两个素数之和,故而用猜想a可得推论猜想b,任意大于9的奇数都可以写成三个奇素数之和。”
开场白说到这里,赫尔夫戈特顿了顿,继续说。
“而我所讲述的‘圆法’,便是证明其哥德巴赫猜想的弱猜想,即猜想b!”
猜想a成立,猜想b一定成立。
但反过来,却不行。
至于为什么,这涉及到一个逻辑数学中很有趣的问题。用初等数学难以描述,但用描述性的语言来解释的话,就是“任意大于9的奇数与奇素数之和”所组成的集合,与“任何偶数”这一集合不等价,且交集中的所有元素无限多,亦不可穷举证明。
其实抽象的来看,无论是圆法的“偶数集合”还是筛法的“1+1形式”,大家都是半斤八两,都差最后的临门一脚。
这个距离可能是隔着一条河,也可能是两山对望。
简短的开场白之后,赫尔夫戈特也不废话,在白板上写下了一行算式。
【……当2||n,有r3(n)=12n(n2n3)n(1-1(p-1)2)n(1+1(p-1)2),(1+o(1))】
看到这行算式的瞬间,陆舟眼睛微微一亮。
这行表达式倒不是老先生随手乱写的,正是哈代与李特伍德这两位数论界的大佬,在1922年那篇论文中提出的众多表达式之一!
在研究孪生素数猜想的时候,陆舟正好查阅过那篇文献,甚至对其中的部分结论进行过引用。
也正是因此,他对这个可以说是印象深刻了。
看来这报告会,有点意思啊。
站在白板前的老头一言不发,继续在拿着记号笔唰唰唰地写着。
会场内鸦雀无声。
不只是陆舟听的很认真,就连其它到大佬们也听的很认真地在看。
术业有专攻,即便是大佬,也不可能在一瞬间就深入到别人的领域中。所以一般报告会上的论文,都会在会议官网上提前放出,供人预习,将准备问的问题写在笔记上。
如果报告会并没有解答自己的问题,在提问环节将问题提出,这才是听学术报告会的正确姿势,并不只是单纯地过去看个热闹、鼓个掌就算参加过了。
四十多分钟的时间过去,赫尔夫戈特停下了手中的记号笔,转身看向会场。
“基本证明过程就是这样了,有什么问题的话,现在可以提问了。”
陆舟举起了手。
赫尔夫戈特和陆舟对上了视线,点了点头,示意他可以起来发言。
扫了眼笔记,陆舟站起身来,提问道。
“关于您第34行列出的算式,我存在疑问。您对=∑a(n)zn+δ(n)的运算中,直接得出每一个整数n>0。我猜测您用的可能是柯西-古萨定理或者它的推论留数定理。但你是如何判断函数f(s)是全纯函数?”
会场内响起小声议论。
显然,陆舟问的这个问题,问到了不少人的心坎里。
“这个问题问得很好,”赫尔夫戈特意外地看了陆舟一眼,转身在白板上写下了一行算式,然后记号笔在上面敲了敲,“懂了吗?”
看到那行算式,陆舟表情略微恍然,点了点头。
“懂了,谢谢。”
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
美女总裁疯狂倒追我 木叶开始的日向宗家 我的细胞监狱 秦云帆杨贵妃 禁欲总裁沦陷小撩妻 书生笑 苏乔沈修瑾 神瞳圣医 从红月开始 盗墓笔记 苍龙啸天 诱宠缠情:沈爷是她黑月光 风起龙城 风兮瞳慕苍烨风兮瞳 港综世界大枭雄 叩问仙道 红楼北静王 绝代天骄 这个牧师超正义 分手后,我成了渣男小叔白月光
末日里,他们都叫我神农,我有些名气,爷爷给我留下一座山和一片鱼塘作为遗产,我在后山的血尸地里养血尸卖血灵芝,把血尸当做饲料在鱼塘养鲨鱼。我赚的盆满钵满不愁吃喝。但是其实我还有另外一个身份没有人知道,...
平凡了几十年的程佳终于不平凡了一回,她,重生了重生成了一个胎儿远离城市,远离现代化,生活在七十年代的小渔村,程佳佳的日子不要太逍遥遛狗斗鸡,上山下水,还有个妹控的小哥哥保驾护航,再来个憨厚老实...
文案拓跋元失足落水时,草包郡主把他打横抱起,眸光悲怜罢,毁你名节,娶你就是。拓跋元新婚之夜,拓跋元一觉醒来,双耳失聪,却能听到别人的心声。他发现了很多秘密,比如说爱他爱得死去活来的前...
家里有矿的大小姐傅许许在成人礼时意外身亡后绑定了一个快穿系统。系统038十分积极的叭叭叭,我们的口号是世界和平傅躺平咸鱼许许微笑,你在想屁吃不如,我先原地成个仙某日。某高中旁边小巷。男主她...
遍及整个世界的二战已经进入尾声,大英帝国的衰落却才刚刚开始,美苏憧憬着未来的光辉岁月,知道破落贵族已经不是自己的阻碍。我并不同意他们的想法,可先拆了英属印度也并不全是坏事。...
一箭敌胆寒,一枪扫乾坤,一锤定天下,九零后颓废青年穿越三国,身兼隋唐三大名将武艺于一身,且看裴枫在蜀汉军中掀起怎样的波澜。...